# The Basics of ROS Applied to Self-Driving Cars

Anthony Navarro





### What is ROS?

"The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications. From drivers to state-of-the-art algorithms, and with powerful developer tools, ROS has what you need for your

next robotics project. And it's all open source."





## Why Use ROS?

#### Without ROS

- Build Device Drivers
- Build a Communications Framework
- Write algorithms for perception, navigation, and motion planning Implement logging, control, and error handling



#### With ROS

- Logging, error handling, communications framework, drivers for standard devices
- Algorithms for perception, navigation and motion planning
- Tools for visualization, simulation and analysis



## How Do SDCs Work?



#### **ROS Nodes**

ROS splits these high level tasks in low level ones and spawns a Unix thread for each of them.





## ROS Topics

ROS nodes communicate with each other over topics

- If you want to send messages, you publish to a topic
- If you want to receive messages, you **subscribe** to a topic





## ROS Messages

ROS provides over 200 predefined messages and the ability to create custom ones IMU Accel **Physical Sensor** Point Time Vel **Image Properties** Cloud Reading Rotate **GPS** 

# SDC Example

Legend

**ROS Node** 







#### **ROS** Limitations





## SDC Nanodegree Program









Be in Demand