Speaker: Mikhail Kourjanski

Lead Data Architect @Paypal

Mikhail Kourjanski is the Lead Data Architect at PayPal, responsible for the data architecture of the PayPal real-time decisioning platform, that handles billions of events per day and maintains dozens of petabytes of data. For fraud prevention function alone, this platform saves more than $500M in annual profits. Mikhail has over 20 years of work experience, including high-tech software engineering, academic research, and consulting for the Financial Services industry. Mikhail’s architecture work includes a number of innovative developments such as high-performance distributed processing over eventually consistent data, multi-layer security model for data-in-transit middleware, service domain models for banking and Fintech clients. Mikhail had delivered multiple engagements for the Top-10 banks in the roles of trusted advisor up to CIO level, lead architect, and IT delivery executive. Prior to consulting period of Mikhail’s career, he proved a successful entrepreneur running his own company, winning and delivering R&D projects for the US Government agencies. Mikhail earned his  Ph.D. degree in applied mathematics from the Moscow State (Lomonosov) University, Russia, followed by the post-doctoral research position at UC Berkeley. Mikhail’s academic research focused on large-scale distributed systems and real-time simulations for the Transportation industry and Smart Cars technologies.

Tracks

  • Groking Timeseries & Sequential Data

    Techniques, practices, and approaches, including image recognition, NLP, predictions, & modeling.

  • Deep Learning in Practice

    Deep learning lessons using Tensorflow, Keras, PyTorch, Caffe including use cases on machine translation, computer vision, & image recogition.

  • AI Meets the Physical World

    Where AI touches the physical world, think drones, ROS, NVidia, TPU and more.

  • Papers to Production: CS in the Real World

    Groundbreaking papers make real world impact.

  • Solving Software Engineering Problems with Machine Learning

    Anomaly detection, ML in IDE's, bayesian optimization for config. Machine Learning techniques for more effective software engineering.

  • Predictive Architectures in the Real World

    Case Study focused look at end to end predictive pipelines from places like Salesforce, Uber, Linkedin, & Netflix.