Speaker: Martin Gorner

Parallel processing and machine learning @Google

Martin is passionate about science, technology, coding, algorithms and everything in between. He graduated from Mines Paris Tech with a major in computer vision, enjoyed his first engineering years in the computer architecture group of ST Microlectronics and then spent the next 11 years shaping the nascent eBook market, starting with the Mobipocket startup, which later became the software part of the Amazon Kindle and its mobile variants. He joined Google Developer Relations in 2011 and now focuses on parallel processing and machine learning (Dataflow and Tensorflow).

Find Martin Gorner at

2019 Tracks

  • Predictive Data Pipelines & Architectures

    Case Study focused look at end to end predictive pipelines from places like Salesforce, Uber, Linkedin, & Netflix

  • Sequential Data: Natural Language, Time Series, and Sound

    Techniques, practices, and approaches around time series and sequential data. Expect topics including image recognition, NLP/NLU, preprocess, & crunching of related algorithms.

  • ML in Action

    Applied track demonstrating how to train, score, and handle common machine learning use cases, including heavy concentration in the space of security and fraud