Speaker: Franziska Bell

Senior Data Science Manager @Uber

Franziska Bell is lead data scientist of the Intelligent Decision Systems team at Uber, which focuses on developing new models for real-time outage and outlier detection. Since joining Uber in late 2014, these models have broken new ground in detection accuracy and speed whilst being sufficiently computationally tractable to be applied to 100,000s of time series in real-time. Before Uber, Franziska was a Postdoc at Caltech where she developed a novel, highly accurate approximate quantum molecular dynamics theory to calculate chemical reactions for large, complex systems, such as enzymes. Franziska earned her Ph.D. in theoretical chemistry from UC Berkeley focusing on developing highly accurate, yet computationally efficient approaches which helped unravel the mechanism of non-silicon-based solar cells and properties of organic conductors.

Find Franziska Bell at

Tracks

  • Groking Timeseries & Sequential Data

    Techniques, practices, and approaches, including image recognition, NLP, predictions, & modeling.

  • Deep Learning in Practice

    Deep learning lessons using Tensorflow, Keras, PyTorch, Caffe including use cases on machine translation, computer vision, & image recogition.

  • AI Meets the Physical World

    Where AI touches the physical world, think drones, ROS, NVidia, TPU and more.

  • Papers to Production: CS in the Real World

    Groundbreaking papers make real world impact.

  • Solving Software Engineering Problems with Machine Learning

    Anomaly detection, ML in IDE's, bayesian optimization for config. Machine Learning techniques for more effective software engineering.

  • Predictive Architectures in the Real World

    Case Study focused look at end to end predictive pipelines from places like Salesforce, Uber, Linkedin, & Netflix.