Speaker: Balaji Rengarajan

Senior Data Scientist @Celect

Balaji Rengarajan is responsible for architecting and engineering key aspects of the cloud- agnostic data science platform based on Celect’s pDB framework for non-parametric machine learning. From 2013 to 2016, he was the lead algorithms architect at Plume Wifi, a startup focusing on managing home WiFi access points from the cloud. Balaji was responsible for developing machine learning models and algorithms to predict the spatial traffic demands in homes as well as models for predicting interference levels and capacity on different WiFi channels. From 2009 to 2013, he held joint appointments as a researcher at Institute IMDEA networks, and University Carlos III in Madrid, Spain. Balaji received his masters and PhD from the university of Texas at Austin and is a recipient of a Marie-Curie ‘Amarout Europe Programme’ fellowship and TxTEC graduate fellowship.

Find Balaji Rengarajan at


  • Groking Timeseries & Sequential Data

    Techniques, practices, and approaches, including image recognition, NLP, predictions, & modeling.

  • Deep Learning in Practice

    Deep learning lessons using Tensorflow, Keras, PyTorch, Caffe including use cases on machine translation, computer vision, & image recogition.

  • AI Meets the Physical World

    Where AI touches the physical world, think drones, ROS, NVidia, TPU and more.

  • Papers to Production: CS in the Real World

    Groundbreaking papers make real world impact.

  • Solving Software Engineering Problems with Machine Learning

    Anomaly detection, ML in IDE's, bayesian optimization for config. Machine Learning techniques for more effective software engineering.

  • Predictive Architectures in the Real World

    Case Study focused look at end to end predictive pipelines from places like Salesforce, Uber, Linkedin, & Netflix.