Speaker: Alex Beutel

Senior Research Scientist @Google

Alex Beutel is a Senior Research Scientist in the Google Brain SIR team working on neural recommendation, fairness in machine learning, and ML for Systems. He received his Ph.D. in 2016 from Carnegie Mellon University’s Computer Science Department, and previously received his B.S. from Duke University in computer science and physics. His Ph.D. thesis on large-scale user behavior modeling, covering recommender systems, fraud detection, and scalable machine learning, was given the SIGKDD 2017 Doctoral Dissertation Award Runner-Up. He received the Best Paper Award at KDD 2016 and ACM GIS 2010, was a finalist for best paper in KDD 2014 and ASONAM 2012, and was awarded the Facebook Fellowship in 2013 and the NSF Graduate Research Fellowship in 2011. More details can be found at alexbeutel.com.

2019 Tracks

  • ML in Action

    Applied track demonstrating how to train, score, and handle common machine learning use cases, including heavy concentration in the space of security and fraud

  • Deep Learning in Practice

    Deep learning use cases around edge computing, deep learning for search, explainability, fairness, and perception.

  • Handling Sequential Data Like an Expert / ML Applied to Operations

    Discussing the complexities of time (half track) and Machine Learning in the data center (half track). Exploring topics from hyper loglog to predictive auto-scaling in each of two half-day tracks.

    Half-day tracks