Host: Gwen Shapira

Principal Data Architect @Confluent, PMC Member @Kafka, & Committer Apache Sqoop

Gwen is a principal data architect at Confluent helping customers achieve success with their Apache Kafka implementation. She has 15 years of experience working with code and customers to build scalable data architectures, integrating microservices, relational and big data technologies. She currently specializes in building real-time reliable data processing pipelines using Apache Kafka. Gwen is an author of “Kafka - the Definitive Guide”, "Hadoop Application Architectures", and a frequent presenter at industry conferences. Gwen is also a committer on the Apache Kafka and Apache Sqoop projects. When Gwen isn't coding or building data pipelines, you can find her pedaling on her bike exploring the roads and trails of California, and beyond.

Find Gwen Shapira at

2019 Tracks

  • ML in Action

    Applied track demonstrating how to train, score, and handle common machine learning use cases, including heavy concentration in the space of security and fraud

  • Deep Learning in Practice

    Deep learning use cases around edge computing, deep learning for search, explainability, fairness, and perception.

  • Handling Sequential Data Like an Expert / ML Applied to Operations

    Discussing the complexities of time (half track) and Machine Learning in the data center (half track). Exploring topics from hyper loglog to predictive auto-scaling in each of two half-day tracks.

    Half-day tracks