Presentation: Serverless for Data Science

Track: Handling Sequential Data Like an Expert / ML Applied to Operations

Location: Cyril Magnin II

Duration: 12:45pm - 12:55pm

Day of week: Wednesday

Share this on:


In this talk we'll first see the basic idea behind serverless cloud architecture and learn how to deploy a very simple web application to AWS Lambda using Zappa. We'll then look in detail at the embarrassingly parallel data science problems where serverless really shines. In particular we'll take a look at PyWren, an ultra-lightweight alternative to heavy big data distributed systems such as Spark.

Note: This is a short talk. Short talks are 10-minute talks designed to offer breadth across the areas of machine learning, artificial intelligence, and data engineering. The short talks are focused on the tools and practices of data science with an eye towards the software engineer.

Speaker: Mike Lee Williams

Research engineer @Cloudera Fast Forward Labs

Mike Lee Williams does applied research into computer science, statistics and machine learning at Cloudera Fast Forward Labs. While getting his PhD in astrophysics he spent 2% of his time observing the heavens in beautiful far west Texas, and the other 98% trying to figure out how to fit straight lines to data. He once did a postdoc at the Max Planck Institute for Extraterrestrial Physics, which, amazingly, is a real place.

Find Mike Lee Williams at

Proposed Tracks

  • Real-World Data Engineering

    Showcasing DataEng tech and highlighting the strengths of each in real-world applications.

  • Deep Learning Applications & Practices

    Deep learning lessons using Tensorflow, Keras, PyTorch, Caffe across machine translation, computer vision.

  • AI Meets the Physical World

    The track where AI touches the physical world, think drones, ROS, NVidea, TPU and more.

  • Data Architectures You've Always Wondered About

    How did they do that? Real-time predictive pipelines at places like Uber, Self-Driving Cars at Google, Robotic Warehouses from Ocado in the UK, are all possible examples.

  • Applied ML for Software

    Practical machine learning inside the data centers and on software engineering teams.

  • Time Series Patterns & Practices

    Stocks, ad tech/real-time bidding, and anomaly detection. Patterns and practices for more effective Time Series work.