Presentation: Interpretable Machine Learning Products

Track: Deep Learning Applications & Practices

Location: Cyril Magnin I

Duration: 1:05pm - 1:55pm

Day of week: Wednesday

Share this on:

Abstract

Interpretable models are easier to improve. Regulators and society can better trust them to be safe and nondiscriminatory. They can also offer insights that can be used to change real-world outcomes for the better. But because there is a central tension between accuracy and interpretability interpretability can be hard to ensure.
I'll explore both the product case for interpretability and the academic research that is starting to make the inner workings of black box models such as deep neural networks easier to understand. In particular, I'll look at the application of a new open source tool called LIME to customer churn, image classification and black box NLP models.

Speaker: Mike Lee Williams

Research engineer @Cloudera Fast Forward Labs

Mike Lee Williams does applied research into computer science, statistics and machine learning at Cloudera Fast Forward Labs. While getting his PhD in astrophysics he spent 2% of his time observing the heavens in beautiful far west Texas, and the other 98% trying to figure out how to fit straight lines to data. He once did a postdoc at the Max Planck Institute for Extraterrestrial Physics, which, amazingly, is a real place.

Find Mike Lee Williams at

Tracks

  • Deep Learning Applications & Practices

    Deep learning lessons using tooling such as Tensorflow & PyTorch, across domains like large-scale cloud-native apps and fintech, and tacking concerns around interpretability of ML models.

  • Predictive Data Pipelines & Architectures

    Best practices for building real-world data pipelines doing interesting things like predictions, recommender systems, fraud prevention, ranking systems, and more.

  • ML in Action

    Applied track demonstrating how to train, score, and handle common machine learning use cases, including heavy concentration in the space of security and fraud

  • Real-world Data Engineering

    Showcasing DataEng tech and highlighting the strengths of each in real-world applications.