Keynote: Analyzing & Preventing Unconscious Bias in Machine Learning

Location: Cyril Magnin Ballroom

Duration: 4:00pm - 5:00pm

Day of week: Wednesday

Abstract

Increasingly AI is finding its way into nearly every product we use (everything from photo sharing apps to criminal justice decision algorithms), but often various types of bias are buried in the underlying data and models.  This can have a damaging impact on both individuals and society. Through the lens of 3 case studies, we will look at how to diagnose bias, identify some sources, and take steps to avoid it.

Speaker: Rachel Thomas

fast.ai founder & USF assistant professor

Rachel Thomas has a math PhD from Duke and was selected by Forbes as one of “20 Incredible Women Advancing AI Research.” She is co-founder of fast.ai and a researcher-in-residence at the University of San Francisco Data Institute, where she teaches in the Masters in Data Science program. Her background includes working as a quant in energy trading, a data scientist + backend engineer at Uber, and a full-stack software instructor at Hackbright.

Find Rachel Thomas at

Proposed Tracks

  • Real-World Data Engineering

    Showcasing DataEng tech and highlighting the strengths of each in real-world applications.

  • Deep Learning Applications & Practices

    Deep learning lessons using Tensorflow, Keras, PyTorch, Caffe across machine translation, computer vision.

  • AI Meets the Physical World

    The track where AI touches the physical world, think drones, ROS, NVidea, TPU and more.

  • Data Architectures You've Always Wondered About

    How did they do that? Real-time predictive pipelines at places like Uber, Self-Driving Cars at Google, Robotic Warehouses from Ocado in the UK, are all possible examples.

  • Applied ML for Software

    Practical machine learning inside the data centers and on software engineering teams.

  • Time Series Patterns & Practices

    Stocks, ad tech/real-time bidding, and anomaly detection. Patterns and practices for more effective Time Series work.